国产色无码网站无码视频在线_兽交精品99高清毛片_在线看人与动人物a级毛片_日韩无码视频三极电影_欧美国产一卡十八禁_欧洲人妻内射免费_看在线免费黄色三片_乳奴调教榨乳器拘束机器_国产深喉口爆露脸视频_亚洲成av人片观看无码不卡

浙江國檢檢測

首頁 檢測百科

分享:球形鑄造碳化鎢顆粒對堆焊層組織及耐磨性能的影響

2021-08-23 15:24:18 

王 蕾,劉 辛,謝煥文,鄒黎明,蔡一湘

(廣東省科學(xué)院,廣東省材料與加工研究所,廣州 510650)

摘 要:將不同含量和粒徑的球形鑄造碳化鎢顆粒添加到霧化鐵粉中制備堆焊焊條,然后在Q235鋼表面進行氧G乙炔火焰堆焊來獲得堆焊層,研究了球形鑄造碳化鎢顆粒的含量和粒徑對堆焊層顯微組織、硬度及耐磨性能的影響.結(jié)果表明:堆焊層中球形鑄造碳化鎢顆粒邊緣有明顯的溶解現(xiàn)象,粒徑越小,溶解現(xiàn)象越明顯;隨球形鑄造碳化鎢顆粒含量的減少,堆焊層中的魚骨狀萊氏體組織減少,隨球形鑄造碳化鎢粒徑的減小,萊氏體組織逐漸粗化;球形鑄造碳化鎢顆粒的含量越高,

粒徑越小,堆焊層的硬度越高,耐磨性越好.

關(guān)鍵詞:球形鑄造碳化鎢;堆焊層;顯微組織;耐磨性能

中圖分類號:TG422.1 文獻標(biāo)志碼:A 文章編號:1000G3738(2017)07G0013G05

EffectofSphericalCastTungstenCarbideParticlesonMicrostructure

andWearResistanceofSurfacingLayer

WANGLei,LIUXin,XIEHuanwen,ZOULiming,CAIYixiang

(GuangdongInstituteofMaterialsandProcessing,GuangdongAcademyofSciences,Guangzhou510650,China)

Abstract:Thesphericalcasttungstencarbideparticleswithdifferentcontentsandparticlesizeswasmixed

withatomizedFepowdertopreparesurfacingelectrodes.ThesurfacinglayeronQ235steelsubstratewasobtained

usingoxygenGacetyleneflamesurfacing.Theeffectofcontentandparticlesizeofsphericalcasttungstencarbideon

themicrostructure,hardnessandwearresistanceofsurfacinglayerwasinvestigated.Theresultsshowthatthere

wasanobviousmeltingphenomenonattheedgesofsphericalcasttungstencarbideinsurfacinglayer.Thesmaller

theparticlesizeofsphericalcasttungstencarbidewas,themoreobviousthemeltingphenomenonwas.ThefishG

boneledeburitedecreased withdecreaseofsphericalcasttungstencarbideparticlescontent,andtheledeburite

becamecoarserwithreductionofparticlesizeofsphericalcasttungstencarbide.Themoresphericalcasttungsten

carbideparticlescontentwas,andthesmallerparticlesizewas,thehigherthehardnesswasandthebetterthewear

resistanceofsurfacinglayerwas.

Keywords:sphericalcasttungstencarbide;surfacelayer;microstructure;wearresistance

隨著現(xiàn)代化工業(yè)的發(fā)展,耐磨堆焊技術(shù)在礦山機械、農(nóng)業(yè)機械和水力機械等磨損件的修復(fù)中得到了越來越廣泛的應(yīng)用.在沖擊磨損十分嚴(yán)重的工況條件下,研制高耐磨性焊條對耐磨堆焊技術(shù)有著重要的影響.目前,研究人員已針對高耐磨性焊條開展了大量的研究[1].有研究表明:通過在焊條藥皮中加入大量的碳和鉻元素可以提高堆焊層的硬度和耐磨性[2G3],但是當(dāng)焊條中的含碳量超過7%(質(zhì)量分?jǐn)?shù))后,隨著含碳量的增加,堆焊層的韌性和抗裂性降低;同時高鉻焊條會對焊工的健康不利[4G5].還有研究表明:通過在焊條藥皮中加入鈷、鉬、鎢、鎳等稀有金屬可以獲得具有較高耐磨性的堆焊層,但仍然存在抗沖擊能力低、裂紋傾向大、界面結(jié)合強度低、硬質(zhì)顆粒易脫落等問題[6G7];另外,這些元素的高成本也限制了其在生產(chǎn)中的應(yīng)用[8G9].


近年來,研究者們通過在焊條中添加高耐磨的碳化鎢顆粒,使工件表面獲得含有硬質(zhì)碳化物顆粒的堆焊層,可顯著提高零部件表面的耐磨性而延長其服役壽命[10].用于堆焊的鑄造碳化鎢顆粒就形狀而言大體分為多角形和球形兩大類.球形鑄造碳化鎢顆粒擁有比多角形碳化鎢顆粒更高的流動性、更細(xì)的內(nèi)部晶粒組織、更小的應(yīng)力集中更少的微裂紋、更高的硬度以及更好的耐磨性能等,因此可以顯著提高工件的表面質(zhì)量.目前,在堆焊材料中直接添加球形鑄造碳化鎢顆粒的研究甚少.為此,作者將球形鑄造碳化鎢顆粒添加到霧化鐵粉中制備堆焊焊條,然后在 Q235鋼表面進行堆焊,研究了球形鑄造碳化鎢顆粒的含量和粒徑對堆焊層組織、硬度及耐磨性能的影響.


1 試樣制備與試驗方法

1.1 試樣制備

采用感應(yīng)重熔法制備球形鑄造碳化鎢(STC)顆粒(以下簡稱碳化鎢顆粒)和霧化鐵粉,碳化鎢顆粒的粒徑分別為180~250μm,75~180μm 和45~75μm,鐵粉的粒徑為75~150μm,然后通過 V 型混粉機將碳化鎢顆粒和霧化鐵粉機械混合后,加入到尺寸為?4mm×300mm 的焊條管皮中制備成堆焊焊 條,焊 條 中 碳 化 鎢 的 質(zhì) 量 分 數(shù) 分 別 為 80%,60%,40%,之后對 Q235鋼進行堆焊試驗,將得到的試樣分別記為1# ~9# 試樣.試樣編號及焊條粉體組成見表1.為減少碳化鎢顆粒在堆焊過程中的熔化燒損,焊接熱源為焊接溫度相對較低的氧G乙炔火焰.制作焊條的材料除了碳化鎢顆粒和霧化鐵粉外,還包括作為焊接添加劑的螢石粉,以防止碳化鎢顆粒的過度熔化并提高其焊接性能[11].焊條管皮為 Q235鋼熱軋加工而成.

表1 試樣編號及焊條粉體組成


Q235鋼板的厚度為4 mm,采用氧G乙炔火焰將 Q235鋼板表面加熱至半熔化狀態(tài)后使用自制焊條進行堆焊,焊前的預(yù)熱溫度為500℃,堆焊的速度為200mm??min-1,層間溫度為400~500 ℃,焊后

直接空冷.堆焊層厚度不小于3 mm,加工出試樣尺寸為40mm×60 mm×4 mm,其中保留堆焊層的厚度為1~2mm.

1.2 試驗方法

用4%(體積分?jǐn)?shù))硝酸酒精溶液腐蝕后,使用JEOLJXAG8100 型 電 子 探 針 中 的 掃 描 電 鏡 功 能(SEM)及其附帶的能譜儀(EDS)對堆焊層進行形貌觀察及化學(xué)成分分析;使用JEOLJXAG8100型電子探針中的掃描電鏡功能和 Merlin型場發(fā)射掃描電鏡觀察堆焊層的顯微組織;采用 RigakuD/MAXGRC型 X射線衍射儀(XRD)分析堆焊層的相結(jié)構(gòu).使用 ZWICKZHUGS114291型顯微硬度計測堆焊層的硬度,從熔合區(qū)到基體等距離?。穫€點進行測試,載荷為0.98N,保壓15s.采用 NUSGIS03型輪式磨耗試驗機對堆焊層進行常溫磨損試驗,試樣尺寸為40mm×60mm×4 mm,載荷為14.7N,對磨件為180# 的SiC砂紙,每個試樣與砂紙對磨3200次,磨損行程共計32m,試樣在磨損前后均用丙酮進行超聲波清洗,采用精度為0.1mg的分析天平稱量后計算磨損量.

2 試驗結(jié)果與討論

2.1 碳化鎢顆粒在堆焊層中的分布

由圖1可知:隨著焊條中碳化鎢顆粒含量的降低,堆焊層截面中的白色碳化鎢數(shù)量逐漸減少;對比圖1(c),(f),(i)可以發(fā)現(xiàn),當(dāng)球形碳化鎢顆粒含量為40%時,粒徑大(180~250μm)的碳化鎢顆粒未完全溶解,而粒徑小(75~180μm 及45~75μm)的碳化鎢顆粒大部分已溶解于堆焊層中.

2.2 顯微組織

由圖2(a)~(c)可以看出:堆焊層中金屬基體的顯微組織隨碳化鎢顆粒含量的不同而不同;當(dāng)碳化鎢顆粒含量為80%時,金屬基體的顯微組織主要為鐵素體和魚骨狀的萊氏體;當(dāng)碳化鎢顆粒含量為40%時,萊氏體組織明顯減少甚至消失.堆焊層金屬基體顯微組織的這種變化與碳化鎢顆粒的溶解有

直接關(guān)系,從圖中可以看出,碳化鎢顆粒的最外層在堆焊過程中發(fā)生了熔化,溶解析出的鎢和碳元素進入 鐵基體后,在快速冷卻過程中發(fā)生了非平衡共晶反應(yīng),生成了魚骨狀的萊氏體組織.因此,隨著碳化鎢顆粒含量的增加,更多的鎢和碳元素進入鐵基體中,從而導(dǎo)致萊氏體組織的增多[12].由圖2(a),(d),(e)可見:在碳化鎢顆粒含量相同而粒徑不同的堆焊層組織中,金屬基體的組織均由鐵素體和萊氏體構(gòu)成;隨著碳化鎢粒徑的減小,細(xì)小魚骨狀的萊氏體組織越來越粗大,這是由于在堆焊過程中,小顆粒碳化鎢溶解所需能量較少[13],因此更多的鎢和碳元素進入鐵基體中,從而使萊氏體的組織粗大.由圖3可以看出:堆焊后碳化鎢顆粒基本保持完好,但顆粒邊緣的鎢和鐵元素存在著不同程度的擴散現(xiàn)象,即碳化鎢顆粒中的鎢向周圍的基體金屬中擴散,基體金屬中的鐵向碳化鎢顆粒中擴散;鎢在基體金屬中的含量隨著與碳化鎢顆粒距離的增加而逐漸降低,鐵的含量隨著與碳化鎢顆粒距離的減小而降低;1# 試樣擴散層的平均厚度約為3μm,2# 試樣的約為4μm,3# 試樣的約為5μm.因此,隨碳化鎢顆粒粒徑的減小,擴散層厚度增加,這也證明了大粒徑碳化鎢顆粒的溶解程度小于小粒徑碳化鎢顆粒的.



不同焊接試樣的截面形貌

圖2 不同堆焊層試樣的顯微組織

圖3 含80%不同粒徑碳化鎢顆粒堆焊層試樣的元素線掃描結(jié)果

由圖4可知,堆焊層是由WC、W2C、Fe3W3C、FeGCr以及Fe3 W3CGFe4 W2C 等物相組成的,其中FeGCr相的存在可能是由焊條管皮和鋼板中的鉻元素所產(chǎn)生的.Fe3W3C、Fe3W3CGFe4W2C 等是碳化鎢顆粒中的鎢和碳元素溶解進入鐵基體中形成的硬質(zhì)相,將有利于提高堆焊層的硬度及耐磨性能.

圖4 1# 試樣的XRD 譜


2.3 硬 度

由圖5可知:對比1# 和2# 試樣的顯微硬度,隨著碳化鎢顆粒含量的增加,顯微硬度呈整體升高的趨勢,這主要是由于隨著碳化鎢顆粒的增多,更多的鎢和碳元素溶解進入鐵基體中,從而細(xì)小魚骨狀分的萊氏體組織就增多,硬度就越高;對比1# 和7# 試樣的顯微硬度,隨著碳化鎢顆粒粒徑的減小,顯微硬度呈總體升高的趨勢,這主要與小粒徑碳化鎢顆粒的增強作用及其對堆焊層組織的顯著影響有關(guān).

圖5 不同試樣從基體到熔合區(qū)的硬度分布

圖6 不同碳化鎢粒徑下堆焊層試樣的磨損質(zhì)量損失G質(zhì)量分?jǐn)?shù)曲線


2.4 耐磨性能

由圖6可知:隨碳化鎢顆粒質(zhì)量分?jǐn)?shù)的增加,磨損質(zhì)量損失呈下降趨勢.當(dāng)碳化鎢顆粒質(zhì)量分?jǐn)?shù)為,40%~60%時,堆焊層質(zhì)量損失量緩慢減小;當(dāng)碳化鎢顆粒質(zhì)量分?jǐn)?shù)為60%~80%時,堆焊層的質(zhì)量損失量迅速減小;當(dāng)碳化鎢顆粒質(zhì)量分?jǐn)?shù)為80%時,耐磨性能最好.在相同碳化鎢顆粒含量的堆焊層中,小粒徑碳化鎢顆粒對堆焊層耐磨性能的增強作用略高

于大粒徑碳化鎢顆粒的,這與小粒徑碳化鎢的顆粒增強作用及其對堆焊層組織的影響密切相關(guān).在相同磨損條件下,沒有添加碳化鎢顆粒試樣的磨損質(zhì)量損失為308.3mg,遠(yuǎn)高于含有碳化鎢顆粒堆焊層的.由此可以看出,采用含有碳化鎢顆粒的焊條進行堆焊后,堆焊層的耐磨性能有顯著提高,尤其當(dāng)碳化鎢含量為80%時,堆焊層存在的大量細(xì)小魚骨狀的萊氏

體組織使其具有高的硬度和良好的耐磨性.

由圖7可以看出:沒添加碳化鎢顆粒的鐵基合金堆焊層的表面磨損最為嚴(yán)重,表面出現(xiàn)互相平行且連續(xù)的犁溝,這是由于在滑動摩擦的過程中,磨屑不斷被剝落,同時在切向力的作用下,磨屑沿著摩擦表面產(chǎn)生相對運動,從而使摩擦表面產(chǎn)生了溝槽,為典型的磨粒磨損特征;對比圖7(b),(c),(d),隨著球形碳化鎢顆粒含量的增多,堆焊層磨損表面逐漸平滑,犁溝隨之變淺,這表明碳化鎢顆粒的增加有效提高了合金堆焊層的耐磨性能;對比圖7(d),(e),

(f),隨著碳化鎢顆粒粒徑的減小,堆焊層的磨損表面更為平滑,犁溝更淺,無明顯黏著磨損特征,同時在磨損表面出現(xiàn)了球狀碳化鎢顆粒.此外,圖7(b)和(c)中的堆焊層磨損表面未見球形碳化鎢的主要原因是3# 和2# 試樣中球形碳化鎢含量相對較少(40%~60%),且大多沉積在熔池底部.

圖7 鐵基合金和不同試樣磨損后表面的SEM 形貌


3 結(jié) 論

(1)采用含有球形鑄造碳化鎢顆粒的焊條進行堆焊后,堆焊層中球形鑄造碳化鎢顆粒邊緣有明顯熔化現(xiàn)象,粒徑大的碳化鎢顆粒未完全溶解,而粒徑小的碳化鎢顆粒則大多溶解于堆焊層中.

(2)隨著焊條中球形鑄造碳化鎢顆粒含量的減少,堆焊層中的魚骨狀萊氏體組織逐漸減少;隨著球形鑄造碳化鎢粒徑的減小,細(xì)小魚骨狀分布的萊氏體組織逐漸粗化.

(3)隨著焊條中球形鑄造碳化鎢顆粒含量的增加和粒徑的減小,顯微硬度均呈整體升高的趨勢,堆焊層的磨損質(zhì)量損失逐漸減小,磨損表面逐漸平滑,犁溝隨之變淺,耐磨性提高.

(文章來源:材料與測試網(wǎng)-機械材料工程)